IQI 04, Seminar 13

Produced with pdflatex and xfig

Quantum physics simulation.

E. "Manny" Knill: knill@boulder.nist.gov

Colorado

Quantum Physics Simulation

Superficial problem statement.

A model of a quantum physics system. Given:

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Some physical quantities. [Complexity for "physical" H, A, B, \ldots]
 - The lowest energy of H.

[In general: Hard]

- The spectrum of *H*. [Complete: Hard. With resolution ϵ : Q. easy.]
- The partition function $Z(\beta)=\operatorname{tr}(e^{-\beta H})$. [Quadratic q. speedup]
- Thermodyn. expectations $\operatorname{tr}(e^{-\beta H}A)/Z(\beta)$. [Quad. q. speedup]
- Expectations $\langle \psi | A | \psi \rangle$ for known states $| \psi \rangle$. [Q. easy to within ϵ]
- Correlation functions $\langle \psi | e^{iHt} A e^{-iHt} B | \psi \rangle$. [Q. easy to within ϵ]
- Response to probes under experimental conditions.

["virtual" experiment is q. easy]

Quantum Physics Simulation

Superficial problem statement.

A model of a quantum physics system. Given:

Problem: Determine a physical quantity.

- A model of quantum physics may be characterized by
 - 1. a Hamiltonian H generating unitary evolution in
 - 2. a state space \mathcal{H} of wavefunctions.
- Example models.
 - A particle of mass m in one dimension.

 \mathcal{H} : Square integrable functions on $\mathbb{R} = (-\infty, \infty)$.

H. Square integrable functions of
$$\mathbb{R} \equiv (-\infty, \infty)$$
.
$$H = -\frac{1}{m} \frac{\partial^2}{\partial x^2} + V. \qquad [\dots \hbar = 1]$$
 Unitary evolution according to Schrödinger's equation:
$$\frac{\partial}{\partial t} \psi = -iH\psi.$$
 N particles in 3 dimensions

N particles in 3 dimensions.

 \mathcal{H} : Square integrable functions on \mathbb{R}^{3N} .

$$H = \sum_{j=1}^{N} E_j(\text{kinetic}) + V_j(\text{potential}) + \sum_{1 \le j \le k \le N} I_{j,k}(\text{interaction})$$

Translation invariant 1-D lattice of spin-¹/₂ systems.

$$H=\sum_k H_I^{({\sf k},{\sf k}+1)}$$
 , with $H_I^{({\sf k},{\sf k}+1)}=\sum_{u,v} lpha_{u,v} \sigma_u^{({\sf k})} \sigma_v^{({\sf k}+1)}$

Physics Simulation Algorithms: Common Features

- Discretization and finitization of the model.
 - Particle of mass m in one dimension.

- Faithful realization in a finite number of gubits.
 - $|-B+r/N\rangle \rightarrow |r\rangle$, r in binary.
- Implementation of evolution.

-
$$\mathbf{K} = F \sum_{x} \frac{1}{m} x^2 |x\rangle \langle x| F^{\dagger}$$
, $\mathbf{V} = \sum_{x} V(x) |x\rangle \langle x|$.
Trotterization: $e^{-iHt} = (e^{-i\mathbf{K}t/T} e^{-i\mathbf{V}t/T})^T + O(1/T)$

Information extraction: State preparation and measurement.

Faithful Evolution

- Example: Triangle XY-model.
 - Three spin- $\frac{1}{2}$ systems A, B, C.
 - Hamiltonian:

 $H = \sigma_z^{\,(\mathrm{A})} + \sigma_z^{\,(\mathrm{B})} + \sigma_z^{\,(\mathrm{C})} + \sigma_x^{\,(\mathrm{A})} \sigma_x^{\,(\mathrm{B})} + \sigma_x^{\,(\mathrm{A})} \sigma_x^{\,(\mathrm{C})} + \sigma_x^{\,(\mathrm{B})} \sigma_x^{\,(\mathrm{C})}$ Each term in H is readily simulatable.

$$e^{-i\sigma_z^{(\mathsf{U})}t}$$
: A z -rotation. $\underbrace{}_{\underline{u}}$ A z -rotation by cnots.

But the terms do not all commute. Combine commuting terms:

$$\begin{split} H_{int} &= \sigma_z^{\,(\text{A})} + \sigma_z^{\,(\text{B})} + \sigma_z^{\,(\text{C})}, \, H_{cpl} = \sigma_x^{\,(\text{A})} \sigma_x^{\,(\text{B})} + \sigma_x^{\,(\text{A})} \sigma_x^{\,(\text{C})} + \sigma_x^{\,(\text{B})} \sigma_x^{\,(\text{C})}. \\ e^{-iH_{int}t} &= e^{-i\sigma_z^{\,(\text{A})}} t e^{-i\sigma_z^{\,(\text{B})}} t e^{-i\sigma_z^{\,(\text{C})}}, \, \text{similarly for } e^{-iH_{cpl}t}. \end{split}$$

$$\begin{array}{lcl} \text{Trotterize:} & e^{-iHt} & = & \left(e^{-iH_{int}\frac{t}{N}}e^{-iH_{cpl}\frac{t}{N}}\right)^{N} + O(|H|^{2}\frac{t^{2}}{N}) \\ & e^{-iHt} & = & \left(e^{-iH_{int}\frac{t}{2N}}e^{-iH_{cpl}\frac{t}{N}}e^{-iH_{int}\frac{t}{2N}}\right)^{N} + O(|H|^{3}\frac{t^{3}}{N^{2}}) \end{array}$$

The Virtual Quantum Physics Lab

- Quantum computers can efficiently simulate an experimental procedure on a specified quantum system.
- Requirements:
 - $\sqrt{}$ Qubit representation of the quantum system.
 - $\sqrt{}$ Evolution of its internal Hamiltonian.
 - $\sqrt{}$ Simulation of coupling to experimental probes.
 - Preparation of a physically meaningful initial state.
 - Implementation of measurements with noise no worse than the actual experiment would have.

Simulatability of Physical Systems

Physical universality thesis for quantum computers.

Given: Physical system S.

Physical Hamiltonian $H \geq 0$ for S.

Physically meaningful state $|\psi\rangle$ of S of av. energy E.

Then: It is possible to represent S, H and $|\psi\rangle$ on qubits, and evolve H for time t using quantum gates,

with resources polynomial in

E, t and the approximation error.

- Evidence: No counterexample so far....
- Typical representation relationships:
 - ullet S can be approximated by N degrees of freedom.
 - Hamiltonian: Sum of pairwise interactions between degrees of freedom.
 - The energy is linear (maybe quadratic) in N.
 - A degree of freedom can be approximated by a "small" qubit register.
 - Simulating an arbitrary interaction on a pair of small registers is "efficient".

Measuring Unitary Expectations

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

Problem: Measure $\langle \psi | U | \psi \rangle$ to within ϵ .

Solution with one qubit.

- Get $\operatorname{Re}\langle\psi|U|\psi\rangle$ from $\operatorname{Prob}(b_r=1)\pm\epsilon/2$.
- To obtain $\operatorname{Im}\langle\psi|U|\psi\rangle$, replace U by iU.
- Requires $O(1/\epsilon^2)$ repetitions.

TOC

Measuring Unitary Expectations

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Unitary $U^{(S)}$, with "controlled" implementations.

Problem: Measure $\langle \psi | U | \psi \rangle$ to within ϵ .

Solution with amplitude estimation.

Assume that $Z_{\psi} =$ "selective -1 of $|\psi\rangle$ " is implementable.

- Obtain $|\langle \psi | U | \psi \rangle|$ from $\pm \arcsin(|\langle \psi | U | \psi \rangle|)/\pi) \pm \delta$.
- Infer $\langle \psi | U | \psi \rangle$ by doing the same with $U' = U^{(S)} | \mathbf{o} \rangle_{\mathbb{A}}^{\wedge} \langle \mathbf{o} | \pm | \mathbf{1} \rangle_{\mathbb{A}}^{\wedge} \langle \mathbf{1} |$ and $| \psi' \rangle = | \psi_{\mathbb{A}} | + \rangle_{\mathbb{A}}$.
- Requires $O(1/\epsilon)$ coherent, controlled applications of U.

Measuring Correlation Functions

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Operators A and B, implementable as needed.

Problem: Measure $\langle \psi | e^{iHt} B e^{-iHt} A | \psi \rangle$ to within ϵ .

- If A and B are unitary, let $U=e^{iHt}Be^{-iHt}A$ and measure $\langle\psi|U|\psi\rangle$ to within $\epsilon.$
- A and B are Hermitian. Let $B(t) = e^{iHt}Be^{-iHt}$
 - 1. Obtain $S=\sum_{a,b=0,1}(-1)^{a+b}\langle\psi|e^{(-1)^aiB(t)s}e^{(-1)^biAs}|\psi\rangle\pm\delta.$
 - 2. $S = 4(s^2 \langle \psi | B(t) A | \psi \rangle + O((|A| + |B|)^3 s^3)) \pm \delta$.
- 3. Set $t = O(\epsilon/(|A| + |B|)^3)$, $\delta = O(\epsilon s^2)$.
- Requires $O((|A| + |B|)^3/\epsilon^3)$ uses of $e^{(-1)^a i B(t) s} e^{(-1)^b i A s}$.
- Note network simplification:

TOC

Measuring Hermitian Expectations

• Given: Quantum system S, preparable in state $|\psi\rangle$.

Hermitian $A^{(S)}$ with e^{-itA} implementable.

Problem: Measure $\langle \psi | A | \psi \rangle$ to within ϵ .

- Solution using unitary expectation measurements.
 - 1. For small t, $e^{-iAt} = 1 itA + O(|A|^2t^2)$.

$$\langle \psi | e^{-iAt} | \psi \rangle = 1 - it \langle \psi | A | \psi \rangle + O(|A|^2 t^2)$$

- 2. Choose t such that $O(|A|^2t^2)$ contributes at most $t\epsilon/2$. $t = O(\epsilon/|A|^2)$
- 3. Measure $\langle \psi | e^{-iAt} | \psi \rangle$ to within $t\epsilon/2$.
- Requires $O(|A|^2/\epsilon^2)$ uses of e^{-iAt} with amp. estimation.

Measuring Spectra

• Given: Quantum system S with Hamiltonian H.

Problem: Measure the spectrum of H.

Spectrum of H: Multiset $\{\lambda_k\}_k$ of eigenvalues of H.

- Measuring the full spectrum is typically exponentially hard.
- Spectral density with resolution ϵ and signal-to-noise (SNR) S.
- 1. Measure $f(t) = \operatorname{tr}(e^{-iHt})/N \pm \delta$ for

$$t = 0, \ldots, (M-2)\Delta, (M-1)\Delta.$$

Note: $\operatorname{tr}(e^{-iHt})/N = \langle \psi | e^{-iHt} | \psi \rangle$ for $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{k} |k\rangle_{\mathsf{S}'}$.

2. Compute the discrete Fourier transform \hat{f} of f.

$$f(l\Delta) = \sum_{k} e^{-i\lambda_{k}\Delta l}/N$$

$$\hat{f} = \frac{1}{\sqrt{M}} \sum_{l} f(l\Delta) e^{i2\pi l/M}$$

Range: $\frac{1}{\Delta} > |H|$. Resolution: $\frac{1}{M\Delta} < \epsilon$. SNR: $\delta < 1/S$.

- Requires $O(|H|S/\epsilon)$ uses of e^{-iHt} with t up to $O(1/\epsilon)$.

TOC

State preparation Problems

- Prepare the ground state of *H*?
 - ... appears to be difficult in general.
- Prepare a thermodynamic state with density matrix $e^{-\beta H}/\mathrm{tr}(e^{-\beta H})$?
 - ... can simulate contact with a thermal bath, but efficiency?

References

- [1] R. P. Feynman. Simulating physics with computers. Int. J. Theor. Phys., 21:467–488, 1982.
- [2] S. Lloyd. Universal quantum simulators. Science, 273:1073-1078, 1996.
- [3] C. Zalka. Threshold estimate for fault tolerant quantum computation. quant-ph/9612028, 1996.
- [4] D. S. Abrams and S. Lloyd. Simulation of many-body fermi systems on a universal quantum computer. Phys. Rev. Lett., 79:2586–2589, 1997.
- [5] C. Miquel, J. P. Paz, M. Saraceno, E. Knill, R. Laflamme, and C. Negrevergne. Interpretation of tomography and spectroscopy as dual forms of quantum computations. Nature, 418:59–62, 2002. quant-ph/0109072.
- [6] R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme. Simulating physical phenomena by quantum networks. Phys. Rev. A, 65:042323/1–17, 2002. quant-ph/0108146.

TOC

14 TOC

Contents

Title: IQI 04, Seminar 13	Measuring Unitary Expectations II
Quantum Physics Simulation I	Measuring Hermitian Expectations9
Quantum Physics Simulation II	Measuring Correlation Functions
Physics Simulation Algorithms: Common Features3	Measuring Spectra11
Faithful Evolution	State preparation Problems
Simulatability of Physical Systems	References
The Virtual Quantum Physics Lab6	
Measuring Unitary Expectations I	